Hoegele, Michael Anton


Probability and dynamical systems: Stochastic ordinary and partialdifferential equations, Stochastic dynamics with a focus on systemsdriven by Lévy type noise, Conceptual stochastic climate models

Dirección de Correspondencia: KR 1 No 18 A-10, BL H.
Universidad de los Andes
Bogotá, Colombia.

Oficina: H-407
Tel: 3394949 ext. 5226.
Email: ma.hoegele[at]uniandes.edu.co
Página Personal: Página web

Títulos Académicos

• Doctor Rerum Naturalium 2011


•52230-Hoegele M, Costa P, Ruffino P. (2019) A strong averaging principle for LÚvy diffusions in foliated spaces with unbounded leaves. Modern Mathematics and Mechanics - Fundamentals, Problems, Challenges (ISBN 978-3-319-66765-2) pp. 283-312. Springer

•48259-Hoegele M. (2019) The first exit problem of reaction-diffusion equations for small multiplicative LÚvy noise. ALEA Latin American Journal of Probability and Mathematical Statistics (ISSN 1980-0436) 16 (-), pp. 665-709.

•59594-Hoegele M, Pavlyukevich I. (2019) The first passage problem for stable linear delay equations perturbed by power law LÚvy noise. Chaos (ISSN 1054-1500) 29 (063104), pp. 1-17.

•42469-Hoegele M, Tetiana K, Gairing J. (2018) Transportation distances and noise sensitivity of multipicative LÚvy SDE with applications. Stochastic Processes and their Applications (ISSN 0304-4149) 128 (-), pp. 2153-2488.

•48258-Hoegele M, Gairing J, Tetiana K, Monahan A. (2017) How close are time series to power tail LÚvy diffusions? -. Chaos (ISSN 1054-1500) 27 (11), pp. 073112-1-073112-21.

•50668-Hoegele M, Roelly S, Kulik A, Valleriani A, Rafler M. (2017) Stochastic processes with applications in the natural sciences. Potsdam University Press. (ISBN 978-3-86956-414-2) Alemania.

•48261-Hoegele M. (2017) The stochastic Allen-Cahn equation with small LÚvy Perturbations. Ediciones IVIC. (ISBN 978-980-261-181-2) Venezuela.

•42363-Hoegele M, Tetiana K, Gairing J, Kulik A. (2016) On the calibration of LÚvy driven time series with coupling distances with an application in paleoclimate. Mathematical Paradigms of Climate Science (ISBN 978-3-319-39091-8) pp. 115-136. Springer

•42470-Hoegele M, Costa P. (2016) Strong averaging along foliated LÚvy diffusions with heavy tails on compact leaves. Potential Analysis (ISSN 0926-2601) 47 (3), pp. 277-311.

•42471-Hoegele M, Ruffino P. (2015) Averaging along LÚvy diffusions in foliated spaces. Nonlinear Analysis: Theory, Methods & Applications (ISSN 0362-546X) 112 (2015), pp. 1-14.

•42468-Hoegele M, Pavlyukevich I. (2015) Metastability in a class of hyperbolic dynamical systems perturbed by heavy-tailed LÚvy type noise. Stochastics and Dynamics (ISSN 0219-4937) 15 (3), pp. 1550019-1550035.

•42455-Hoegele M, Tetiana K, Gairing J, Kulik A. (2014) Coupling distances between LÚvy measures and applications to noise sensitivity of SDE. Stochastics and Dynamics (ISSN 0219-4937) 15 (2014), pp. 1550009-1550033.

•42456-Hoegele M, Pavlyukevich I. (2014) The exit problem from the neighborhood of a global attractor for heavy-tailed LÚvy diffusions. Stochastic Analysis and Applications (ISSN 0736-2994) 32 (2014), pp. 163-190.

•42472-Hoegele M, Imkeller P, Debussche A. (2013) The dynamics of nonlinear reaction-diffusion equations with small LÚvy noise. Springer Lecture Notes in Mathematics. (ISBN 978-3-319-00828-8) Alemania.

•42459-Hoegele M, Debussche A, Imkeller P. (2011) Asymptotic first exit times of the Chafee-Infante equation with small heavy-tailed LÚvy noise. Electronic Communications in Probability (ISSN 1083-589X) 16 (21), pp. 213-225.