Johannes Rau

Home / Professors / Johannes Rau
Johannes Rau

Johannes Rau

Doktor der Naturwissenschaften

j.rau @uniandes.edu.co

Office: H-302

Extension: 2722

Profile
Courses
Products
Degrees
Projects
Sitio Web

Profile

Research Interest: Tropical geometry Enumerative geometry Intersection theory Real algebraic varieties

Recent Courses

  • 2021
    • CÁLCULO INTEGRAL-ECUAC.DIFEREN

      First period
      Bachelor Level

      CÁLCULO VARIABLE COMPLEJA

      First period
      Bachelor Level

Recent Products

Rau J. (2023)
On the tropical Lefschetz-Hopf trace formula
Journal of Algebraic Combinatorics (ISSN 0925-9899)
Article
Rau J. (2023)
Real semi-stable degenerations, real-oriented blow-ups and straightening corners
International Mathematics Research Notices (ISSN 1073-7928)
Article

Recent Degrees

Doktor der Naturwissenschaften

Doctoral degree

Technische Universität Kaiserslautern

2009

Alemania

Recent Projects

  • 2021
    • Matroids in tropical geometry

      Duration: 36 months

      PR.3.2020.7167

      The general aim of the project is to extend and deepen the fruitful interactionbetween the geometry of smooth varieties and the combinatorial properties ofmatroids that lies at the heart of tropical geometry. More explicitly, in my projectI want to tackle three problems which are central to the further development ofthis theory:1. Using the matroidal intersection theory developed in [FR13; Sha13] and thetropical Hodge groups developed in [Ite+16], I want to prove a tropical traceformula in analogy to its classical counterparts by Lefschetz, Weil, Grothendieck,Deligne. The goal is apply this formula to the study of matroid invariants(characteristic polynomial, g-polynomial [AHK15; ADH20; Spe09]) as well as tothe study of classical non-compact trace formulas [GM03].2. I want to generalize the existing tropical-Lagrangian correspondences tohigher dimensions/codimensions using the language of Lagrangian matroids[Mat18; Mik19; Hic19; ADH20].3. The last problems aims to solve further cases of the tropical Hodge conjec-ture, particularly in the case of tropical abelian varieties [JRS18; MZ14; Zha20].

Courses

  • 2021
    • CÁLCULO INTEGRAL-ECUAC.DIFEREN

      First period
      Bachelor Level

      CÁLCULO VARIABLE COMPLEJA

      First period
      Bachelor Level
  • 2020
    • CÁLC INTEG-ECUAC DIFER(INGLÉS)

      First period
      Bachelor Level

      CÁLCULO INTEGRAL-ECUAC.DIFEREN

      Second period
      Bachelor Level
    • INT GEOMETRÍA TROPICAL

      Second period
      Master Level

      INT GEOMETRÍA TROPICAL

      Second period
      Bachelor Level

Products

Rau J. (2023)
On the tropical Lefschetz-Hopf trace formula
Journal of Algebraic Combinatorics (ISSN 0925-9899)
Article
Rau J. (2023)
Real semi-stable degenerations, real-oriented blow-ups and straightening corners
International Mathematics Research Notices (ISSN 1073-7928)
Article
Rau J. (2023)
The tropical Poincaré-Hopf theorem
Journal of Combinatorial Theory - Series A (ISSN 0097-3165)
Article
Rau J.(2022).
(cont. 2022) LAGARTOS Seminario
Event
Rau J. (2022)
Real phase structures on matroid fans and matroid orientations
Journal of the London Mathematical Society (ISSN 0024-6107)
Article
Rau J.(2021).
(cont. 2021) Latino-Americano Geometría Algebráica Real y Tropical Online Seminario
Event
Rau J.
Mission Chercheur Invité, Universidad de Nantes
Research International Proposal
Rau J.(2020).
Latino-Americano Geometría Algebráica Real y Tropical Online Seminario
Event
Rau J.
Tübingen Reloaded
Research International Proposal

Degrees

  • Doktor der Naturwissenschaften

    Doctoral degree

    Technische Universität Kaiserslautern

    2009

    Alemania

Projects

  • 2021
    • Matroids in tropical geometry

      Duration: 36 months

      PR.3.2020.7167

      The general aim of the project is to extend and deepen the fruitful interactionbetween the geometry of smooth varieties and the combinatorial properties ofmatroids that lies at the heart of tropical geometry. More explicitly, in my projectI want to tackle three problems which are central to the further development ofthis theory:1. Using the matroidal intersection theory developed in [FR13; Sha13] and thetropical Hodge groups developed in [Ite+16], I want to prove a tropical traceformula in analogy to its classical counterparts by Lefschetz, Weil, Grothendieck,Deligne. The goal is apply this formula to the study of matroid invariants(characteristic polynomial, g-polynomial [AHK15; ADH20; Spe09]) as well as tothe study of classical non-compact trace formulas [GM03].2. I want to generalize the existing tropical-Lagrangian correspondences tohigher dimensions/codimensions using the language of Lagrangian matroids[Mat18; Mik19; Hic19; ADH20].3. The last problems aims to solve further cases of the tropical Hodge conjec-ture, particularly in the case of tropical abelian varieties [JRS18; MZ14; Zha20].

Sitio Web

Para consultar mi sitio web: Aquí