NP-Intermediate Problems and Quantum Algorithms

Tristram Bogart

Universidad de los Andes

31 May 2013
Outline

- Complexity classes and graph theory
- The graph isomorphism problem
- The hidden subgroup problem and quantum algorithms
- The abelian case
- The symmetric group case and graph isomorphisms
A (yes-no) decision problem is in complexity class P if there is a algorithm (Turing machine) to solve it and a polynomial p such that for all n and all input of bit-length n, the algorithm terminates correctly in at most $p(n)$ steps.
P and NP

A (yes-no) decision problem is in complexity class P if there is a algorithm (Turing machine) to solve it and a polynomial p such that for all n and all input of bit-length n, the algorithm terminates correctly in at most $p(n)$ steps.

A decision problem is in class NP if a 'yes' answer can always be verified in polynomial time with the aid of an appropriate certificate. A problem is in co-NP if a 'no' answer can be similarly verified.
P and NP

A (yes-no) decision problem is in complexity class P if there is an algorithm (Turing machine) to solve it and a polynomial p such that for all n and all input of bit-length n, the algorithm terminates correctly in at most $p(n)$ steps.

A decision problem is in class NP if a ’yes’ answer can always be verified in polynomial time with the aid of an appropriate certificate. A problem is in co-NP if a ’no’ answer can be similarly verified.

Note that $P \subseteq NP \cap co-NP$.

Million-dollar question: Does P equal NP?
Graph problems in \(P \)

A graph is a finite set \(V \) of vertices and a set \(E \) of edges, given as pairs of vertices.

The following graph theoretic problems are in \(P \):

- **Connected**: Given a graph \(\Gamma \), is there a path between every pair of vertices?
- **Bipartite**: Given a graph \(\Gamma \), can its vertices be partitioned into two sets \(A \) and \(B \) such that every edge has one end in \(A \) and the other in \(B \)?
- **Eulerian circuit**: Given a graph \(\Gamma \), does \(\Gamma \) contain a (closed) circuit that includes each edge of \(\Gamma \) exactly once?
Graph problems in P

A graph is a finite set V of vertices and a set E of edges, given as pairs of vertices.

The following graph theoretic problems are in P:

- **Connected**: Given a graph Γ, is there a path between every pair of vertices?
- **Bipartite**: Given a graph Γ, can its vertices be partitioned into two sets A and B such that every edge has one end in A and the other in B?
- **Eulerian circuit**: Given a graph Γ, does Γ contain a (closed) circuit that includes each edge of Γ exactly once?

A graph has an Eulerian circuit if and only if every vertex has even degree.
Graph problems in NP

- **k-Clique**: Given a graph Γ and a number k, does Γ contain a complete subgraph with k vertices?
- **k-Chromatic**: Given a graph Γ and a number k, can the vertices of Γ be colored with k colors such that no two adjacent vertices have the same color?
- **Hamiltonian**: Given a graph Γ, does Γ contain a cycle that passes through each vertex exactly once?
- **Graph Isomorphism**: Given graphs Γ_1 and Γ_2, is there a bijection f from the vertices of Γ_1 to the vertices of Γ_2 such that $\{u, v\}$ is an edge of Γ_1 if and only if $\{f(u), f(v)\}$ is an edge of Γ_2?
Graph problems in NP

- **k-Clique**: Given a graph Γ and a number k, does Γ contain a complete subgraph with k vertices?

- **k-Chromatic**: Given a graph Γ and a number k, can the vertices of Γ be colored with k colors such that no two adjacent vertices have the same color?

- **Hamiltonian**: Given a graph Γ, does Γ contain a cycle that passes through each vertex exactly once?

- **Graph Isomorphism**: Given graphs Γ_1 and Γ_2, is there a bijection f from the vertices of Γ_1 to the vertices of Γ_2 such that $\{u, v\}$ is an edge of Γ_1 if and only if $\{f(u), f(v)\}$ is an edge of Γ_2?

In each case, the desired object is itself a certificate whenever the answer is YES. None of the problems are known to be in co-NP.
A problem X is

- **NP-hard** if every problem in NP can be reduced to X in polynomial time.
- **NP-complete** if it is both in NP and NP-hard.
- **NP-intermediate** if it is NP, but neither in P nor NP-Hard.

By definition, if some NP-complete problem can be solved in polynomial-time, then $P=NP$.
A problem X is

- **NP-hard** if every problem in NP can be reduced to X in polynomial time.
- **NP-complete** if it is both in NP and NP-hard.
- **NP-intermediate** if it is NP, but neither in P nor NP-Hard.

By definition, if some NP-complete problem can be solved in polynomial-time, then $P=NP$.

Theorem (Cook, '71) The problem SAT (satisfiability of Boolean functions) is NP-complete.

Theorem (Karp, '72) The problems k-Clique, k-Chromatic, Hamiltonian (and several others) are NP-complete.
NP-completeness

A problem X is

- **NP-hard** if every problem in NP can be reduced to X in polynomial time.
- **NP-complete** if it is both in NP and NP-hard.
- **NP-intermediate** if it is NP, but neither in P nor NP-Hard.

By definition, if some NP-complete problem can be solved in polynomial-time, then $P=NP$.

Theorem (Cook, ’71) The problem SAT (satisfiability of Boolean functions) is NP-complete.

Theorem (Karp, ’72) The problems k-Clique, k-Chromatic, Hamiltonian (and several others) are NP-complete.

In fact most problems in NP are either known to be in P or are NP-complete. Graph Isomorphism is an exception, as is factoring.
Friendliness of Graph Isomorphism

- There are polynomial-time algorithms for important special cases such as planar graphs, graphs of bounded vertex degree, and graphs whose adjacency matrices have bounded eigenvalue multiplicity.
- Non-isomorphic graphs usually can be easily distinguished by degree sequence, counting small subgraphs, or eigenvalues of the adjacency matrix.
- There are algorithms that usually run in polynomial time in practice, though take exponential time in the worst case.
- The problem of counting isomorphisms reduces in polynomial time to the decision problem, unlike for many NP-hard problems.
Isomorphisms and automorphisms

Let Γ_1 and Γ_2 be graphs on n vertices and Γ be their disjoint union. An isomorphism between Γ_1 and Γ_2 is an automorphism σ of Γ that interchanges $V(\Gamma_1)$ with $V(\Gamma_2)$.
Isomorphisms and automorphisms

Let Γ_1 and Γ_2 be graphs on n vertices and Γ be their disjoint union. An isomorphism between Γ_1 and Γ_2 is an automorphism σ of Γ that interchanges $V(\Gamma_1)$ with $V(\Gamma_2)$.

Given generators of $\text{Aut}(\Gamma)$, we can check in polynomial time if any automorphism has the interchange property. So Graph Isomorphism reduces to finding generators for $\text{Aut}(\Gamma) \leq S_{2n}$, a special case of ...
The hidden subgroup problem

Given a finite group G, find generators of an unknown subgroup H. We are allowed to call a function f on G that satisfies:

$$f(x) = f(y) \iff x, y \text{ are in the same coset of } H.$$
The hidden subgroup problem

Given a finite group G, find generators of an unknown subgroup H. We are allowed to call a function f on G that satisfies:

$$f(x) = f(y) \iff x, y \text{ are in the same coset of } H.$$

Example: Let $G = \mathbb{Z}^3_2 = \langle y_1, y_2, y_3 \rangle$ and $H = \langle y_1 + y_2 \rangle$, a two-element subgroup. Define $f : G \to \mathbb{Z}_2^2$ by $f(a, b, c) = (a + b, c)$. Then f is constant on the cosets of H and distinguishes them.
The hidden subgroup problem

Given a finite group G, find generators of an unknown subgroup H. We are allowed to call a function f on G that satisfies:

$$f(x) = f(y) \iff x, y \text{ are in the same coset of } H.$$

Example: Let $G = \mathbb{Z}_2^3 = \langle y_1, y_2, y_3 \rangle$ and $H = \langle y_1 + y_2 \rangle$, a two-element subgroup. Define $f : G \to \mathbb{Z}_2^2$ by $f(a, b, c) = (a + b, c)$. Then f is constant on the cosets of H and distinguishes them.

To solve the hidden subgroup problem, we will study representations of the group G: homomorphisms ρ from G to $\text{GL}_n(\mathbb{C})$. The number $d_\rho := n$ is the dimension of the representation. The character $\chi_\rho(g)$ is the trace of the matrix $\rho(g)$.
A quantum algorithm for the HSP

Define a state $|g\rangle$ for each $g \in G$. Define states $|(\rho, i, j)\rangle$ for each irreducible representation ρ and each matrix entry (i, j).
A quantum algorithm for the HSP

Define a state $|g\rangle$ for each $g \in G$. Define states $|(\rho, i, j)\rangle$ for each irreducible representation ρ and each matrix entry (i, j).

Define the following operators:

- An operator S that superposes the elements of G.
- An operator U_f that evaluates f; that is,

$$U_f (|g\rangle \otimes |00\ldots0\rangle) = |g\rangle \otimes |f(g)\rangle$$

- The quantum Fourier transform \mathcal{F} that superposes all possible irreducible representations of a given element of G.

For appropriate groups G, each can be implemented with polynomially many basic quantum operations.
A quantum algorithm for the HSP, continued

- Initialize two quantum registers, one for elements of G and another for values of f.

- Apply S to the first register to get

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \otimes |00 \ldots 0\rangle .$$

- Apply U_f to get

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \otimes |f(g)\rangle .$$

- Measure the second register. The result is $f(c)$ for some random $c \in G$, giving

$$\frac{1}{\sqrt{|H|}} \sum_{h \in H} |hc\rangle \otimes |f(c)\rangle .$$
Ignore the second register and apply \mathcal{F} to the first, giving

$$
\sum_{\rho \text{ irrep of } G} \frac{d_{\rho}}{\sqrt{|G||H|}} \left(\sum_{h \in H} \rho(ch)_{i,j} |\rho, i, j\rangle \right).
$$

Measure the representation ρ. The probability of a given ρ is

$$
d_{\rho} \frac{\sum_{h \in H} \chi_{\rho}(h)}{|G|}.
$$

Repeat enough times to effectively sample H.

A quantum algorithm for the HSP, continued
Representations of abelian groups

The representations of a cyclic group $\mathbb{Z}_n = \langle y \rangle$ are all one-dimensional, given by $y \mapsto e^{\frac{2\pi i k}{n}}, \ 0 \leq k \leq n - 1$. The quantum Fourier transform in this case is the regular Fourier transform.

In particular, for \mathbb{Z}_2, we have the trivial representation given by $y \mapsto 1$ and the sign representation given by $y \mapsto -1$.
Representations of abelian groups

The representations of a cyclic group \(\mathbb{Z}_n = \langle y \rangle \) are all one-dimensional, given by \(y \mapsto e^{\frac{2\pi i k}{n}}, \ 0 \leq k \leq n - 1 \). The quantum Fourier transform in this case is the regular Fourier transform.

In particular, for \(\mathbb{Z}_2 \), we have the trivial representation given by \(y \mapsto 1 \) and the sign representation given by \(y \mapsto -1 \).

For \(\mathbb{Z}_2^n = \langle y_1, y_2, \ldots, y_n \rangle \) we have \(2^n \) representations given by \(y_i \mapsto \pm 1 \) for each \(i \). Given such a \(\rho \),

\[
\rho \left(\sum_{i \in I} y_i \right) = -1 \# \{ i \in I : \rho(y_i) = -1 \}.
\]

That is, the representations give the (vector space) dual to \(\mathbb{Z}_2^n \).
An abelian example

Let $G = \mathbb{Z}_2^3 = \langle y_1, y_2, y_3 \rangle$ and $H = \langle y_1 + y_2 \rangle \cong \mathbb{Z}_2$.

<table>
<thead>
<tr>
<th>ρ</th>
<th>$\rho(e)$</th>
<th>$\rho(y_1 + y_2)$</th>
<th>Prob(ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+,+,+)</td>
<td>1</td>
<td>1</td>
<td>2/8</td>
</tr>
<tr>
<td>(+,+-)</td>
<td>1</td>
<td>1</td>
<td>2/8</td>
</tr>
<tr>
<td>(+,-,+)</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(+,-,-)</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(-,+,+)</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(-,+-)</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(-,-,+)</td>
<td>1</td>
<td>1</td>
<td>2/8</td>
</tr>
<tr>
<td>(-,-,-)</td>
<td>1</td>
<td>1</td>
<td>2/8</td>
</tr>
</tbody>
</table>
An abelian example

Let $G = \mathbb{Z}_2^3 = \langle y_1, y_2, y_3 \rangle$ and $H = \langle y_1 + y_2 \rangle \cong \mathbb{Z}_2$.

<table>
<thead>
<tr>
<th>ρ</th>
<th>$\rho(e)$</th>
<th>$\rho(y_1 + y_2)$</th>
<th>Prob(ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+,+,+)</td>
<td>1</td>
<td>1</td>
<td>2/8</td>
</tr>
<tr>
<td>(+,+,−)</td>
<td>1</td>
<td>1</td>
<td>2/8</td>
</tr>
<tr>
<td>(+,−,+)</td>
<td>1</td>
<td>−1</td>
<td>0</td>
</tr>
<tr>
<td>(+,−,−)</td>
<td>1</td>
<td>−1</td>
<td>0</td>
</tr>
<tr>
<td>(−,+,+)</td>
<td>1</td>
<td>−1</td>
<td>0</td>
</tr>
<tr>
<td>(−,+,−)</td>
<td>1</td>
<td>−1</td>
<td>0</td>
</tr>
<tr>
<td>(−,−,+)</td>
<td>1</td>
<td>1</td>
<td>2/8</td>
</tr>
<tr>
<td>(−,−,−)</td>
<td>1</td>
<td>1</td>
<td>2/8</td>
</tr>
</tbody>
</table>

Thus the algorithm gives a random representation dual to H. The same holds for any subgroup K of \mathbb{Z}_2^n. With high probability, K^* is generated by $2n$ random elements of it. Finally, K^* determines K.
Irreducible representations of the symmetric group S_3

- Trivial representation: $\rho_{\text{triv}}(\sigma) = 1$ for all permutations σ.

- Sign representation: $\rho_{\text{sign}}(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even} \\ -1 & \text{if } \sigma \text{ is odd} \end{cases}$

- Standard representation ρ_{std}: let S_3 act on \mathbb{C}^3 by permuting coordinates. Restrict the action to the plane given by $x_1 + x_2 + x_3 = 0$. Choose a basis for the plane: say $\{e_1 - e_2, e_2 - e_3\}$.
Irreducible representations of the symmetric group S_3

- Trivial representation: $\rho_{\text{triv}}(\sigma) = 1$ for all permutations σ.

- Sign representation: $\rho_{\text{sign}}(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even} \\ -1 & \text{if } \sigma \text{ is odd} \end{cases}$

- Standard representation ρ_{std}: let S_3 act on \mathbb{C}^3 by permuting coordinates. Restrict the action to the plane given by $x_1 + x_2 + x_3 = 0$. Choose a basis for the plane: say $\{e_1 - e_2, e_2 - e_3\}$.

The respective dimensions are 1, 1, and 2. Since $1^2 + 1^2 + 2^2 = 6 = |S_3|$, Matschke’s theorem guarantees that they are the only irreducible representations of S_3 over \mathbb{C}.
Sampling subgroups of S_3

<table>
<thead>
<tr>
<th>$\sigma \in S_3$</th>
<th>$\rho_{\text{triv}}(\sigma)$</th>
<th>$\rho_{\text{sgn}}(\sigma)$</th>
<th>$\rho_{\text{std}}(\sigma)$</th>
<th>$\chi_{\text{std}}(\sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>1</td>
<td>1</td>
<td>$\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$</td>
<td>2</td>
</tr>
<tr>
<td>(12)</td>
<td>1</td>
<td>-1</td>
<td>$\begin{pmatrix} -1 & 1 \ 0 & 1 \end{pmatrix}$</td>
<td>0</td>
</tr>
<tr>
<td>(23)</td>
<td>1</td>
<td>-1</td>
<td>$\begin{pmatrix} 1 & 0 \ 1 & -1 \end{pmatrix}$</td>
<td>0</td>
</tr>
<tr>
<td>(13)</td>
<td>1</td>
<td>-1</td>
<td>$\begin{pmatrix} 0 & -1 \ -1 & 0 \end{pmatrix}$</td>
<td>0</td>
</tr>
<tr>
<td>(123)</td>
<td>1</td>
<td>1</td>
<td>$\begin{pmatrix} 0 & -1 \ 1 & -1 \end{pmatrix}$</td>
<td>-1</td>
</tr>
<tr>
<td>(132)</td>
<td>1</td>
<td>1</td>
<td>$\begin{pmatrix} -1 & 1 \ -1 & 0 \end{pmatrix}$</td>
<td>2</td>
</tr>
</tbody>
</table>
Sampling subgroups of S_3, continued

For the trivial group $\{e\}$:

\[
\begin{align*}
\Pr(\rho_{\text{triv}}) &= 1 \cdot \frac{\chi_{\text{triv}}(e)}{6} = \frac{1}{6} \\
\Pr(\rho_{\text{sgn}}) &= 1 \cdot \frac{\chi_{\text{sgn}}(e)}{6} = \frac{1}{6} \\
\Pr(\rho_{\text{std}}) &= 2 \cdot \frac{\chi_{\text{std}}(e)}{6} = \frac{4}{6}
\end{align*}
\]
Sampling subgroups of S_3, continued

For the trivial group $\{e\}$:

\[
\begin{align*}
\Pr(\rho_{\text{triv}}) &= 1 \cdot \frac{\chi_{\text{triv}}(e)}{6} = \frac{1}{6} \\
\Pr(\rho_{\text{sgn}}) &= 1 \cdot \frac{\chi_{\text{sgn}}(e)}{6} = \frac{1}{6} \\
\Pr(\rho_{\text{std}}) &= 2 \cdot \frac{\chi_{\text{std}}(e)}{6} = \frac{4}{6}
\end{align*}
\]

For the group $H = \langle (12) \rangle = \{e, (12)\} \cong \mathbb{Z}/2$:

\[
\begin{align*}
\Pr(\rho_{\text{triv}}) &= 1 \cdot \frac{\chi_{\text{triv}}(e)+\chi_{\text{triv}}((12))}{6} = \frac{(1+1)/6}{6} = \frac{2}{6} \\
\Pr(\rho_{\text{sgn}}) &= 1 \cdot \frac{\chi_{\text{sgn}}(e)+\chi_{\text{sgn}}((12))}{6} = \frac{(1-1)/6}{6} = 0 \\
\Pr(\rho_{\text{std}}) &= 2 \cdot \frac{\chi_{\text{std}}(e)+\chi_{\rho}((12))}{6} = 2 \cdot \frac{(2+0)/6}{6} = \frac{4}{6}
\end{align*}
\]
Sampling subgroups of S_3, continued

For the trivial group $\{e\}$:

\[
\begin{align*}
\Pr(\rho_{\text{triv}}) &= 1 \cdot \frac{\chi_{\text{triv}}(e)}{6} = 1/6 \\
\Pr(\rho_{\text{sgn}}) &= 1 \cdot \frac{\chi_{\text{sgn}}(e)}{6} = 1/6 \\
\Pr(\rho_{\text{std}}) &= 2 \cdot \frac{\chi_{\text{std}}(e)}{6} = 4/6
\end{align*}
\]

For the group $H = \langle (12) \rangle = \{e, (12)\} \cong \mathbb{Z}/2$:

\[
\begin{align*}
\Pr(\rho_{\text{triv}}) &= 1 \cdot \frac{\chi_{\text{triv}}(e) + \chi_{\text{triv}}((12))}{6} = (1 + 1)/6 = 2/6 \\
\Pr(\rho_{\text{sgn}}) &= 1 \cdot \frac{\chi_{\text{sgn}}(e) + \chi_{\text{sgn}}((12))}{6} = (1 - 1)/6 = 0 \\
\Pr(\rho_{\text{std}}) &= 2 \cdot \frac{\chi_{\text{std}}(e) + \chi_{\rho}(12)}{6} = 2 \cdot (2 + 0)/6 = 4/6
\end{align*}
\]

To distinguish $\langle (12) \rangle$ from the trivial group, we need to know with high probability that ρ_{sgn} does not show up.
Negative results for S_n

Theorem (Hallgren-Russell-Ta-Shma, ’00) Fourier sampling cannot distinguish the trivial subgroup of S_n from certain subgroups of order two in polynomial time with high probability.
Negative results for S_n

Theorem (Hallgren-Russell-Ta-Shma, ’00) Fourier sampling cannot distinguish the trivial subgroup of S_n from certain subgroups of order two in polynomial time with high probability.

In particular, if Γ_1 and Γ_2 are two rigid graphs, then the isomorphism problem reduces to this case of the hidden subgroup problem.
Negative results for S_n

Theorem (Hallgren-Russell-Ta-Shma, ’00) Fourier sampling cannot distinguish the trivial subgroup of S_n from certain subgroups of order two in polynomial time with high probability.

In particular, if Γ_1 and Γ_2 are two rigid graphs, then the isomorphism problem reduces to this case of the hidden subgroup problem.

Strong Fourier sampling is a variant of the algorithm where we keep track of not just the character of a representation ρ, but the whole matrix.
Negative results for S_n

Theorem (Hallgren-Russell-Ta-Shma, ’00) Fourier sampling cannot distinguish the trivial subgroup of S_n from certain subgroups of order two in polynomial time with high probability.

In particular, if Γ_1 and Γ_2 are two rigid graphs, then the isomorphism problem reduces to this case of the hidden subgroup problem.

Strong Fourier sampling is a variant of the algorithm where we keep track of not just the character of a representation ρ, but the whole matrix.

Theorem (Moore-Russell-Schulman, ’08) Strong Fourier sampling also cannot distinguish hidden subgroups of S_n in polynomial time with high probability.

Question: Can more intricate quantum algorithms efficiently solve the hidden subgroup problem for S_n?
References