A brief introduction to Montgomery Conjecture (Pair correlation of zeros of ζ)

Leonardo A. Cano García

Universidad Sergio Arboleda

26 de Mayo 2014
1. Outline

2. Introducing \(\zeta \)

3. Montgomery conjecture

4. GUE

5. Some ideas around Montgomery conjecture
Outline

Introducing ζ
Montgomery conjecture
GUE
Some ideas around Montgomery conjecture
\(\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \) is defined for \(s = \sigma + i\gamma \) for \(\sigma > 1 \).
To extend ζ meromorphically to \mathbb{C} we use the formula:

$$
\zeta(s) = \frac{\pi^{s/2}}{\Gamma(s/2)} \left\{ \frac{1}{s(s - 1)} + \int_{1}^{\infty} \left(x^{1/2s-1} + x^{-1/2s-1} \right) \sum_{n=1}^{\infty} e^{-n^2 \pi x} \, dx \right\}
$$

and observe the right–hand side integral represents an entire function of s.

Leonardo A. Cano García
To prove the previous formula we use

$$\Gamma\left(\frac{S}{2}\right) = \int_0^\infty e^{-t} t^{s/2-1} dt = n^s \pi^{s/2} \int_0^\infty e^{-n^2 \pi x} x^{1/2s-1} dx.$$
Some properties of ζ
Some properties of ζ

$\zeta(s) \neq 0$ for $\sigma > 1$.
Some properties of ζ

$\zeta(s) \neq 0$ for $\sigma > 1$. This follows from the convergence of the Euler product formula:

$$
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s} \right).
$$
Some properties of ζ

$\zeta(s)$ has simple zeros at $0, -2, -4, \ldots$.
Some properties of ζ

$\zeta(s)$ has simple zeros at $0, -2, -4, \cdots$. Because $\Gamma(s/2)$ has simple poles at $0, -2, -4, \cdots$ and

$$\zeta(s) = \frac{\pi^{s/2}}{\Gamma(s/2)} \left\{ \frac{1}{s(s - 1)} + \int_1^\infty (x^{1/2s - 1} + x^{-1/2s - 1}) \sum_{n=1}^\infty e^{-n^2 \pi x} \, dx \right\}.$$
Some properties of ζ

$\zeta(s) \neq 0$ for $\sigma = 1$ (result of Hadamard and De la Vallée Poussin).
Some properties of ζ

Zeros of ζ are symmetric respect to $\sigma = 1/2$ for $0 \leq \sigma \leq 1$.
Some properties of ζ

Zeros of ζ are symmetric respect to $\sigma = 1/2$ for $0 \leq \sigma \leq 1$. Because

$$\pi^{-s/2} \Gamma(s/2) \zeta(s) = \pi^{-\frac{(1-s)}{2}} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)$$

Hence $\zeta(s) \neq 0$ for $\sigma = 0$.
Some properties of ζ

From
$$\zeta(s) = \frac{\pi^{s/2}}{\Gamma(s/2)} \left\{ \frac{1}{s(s-1)} + \int_1^{\infty} \left(x^{1/2s-1} + x^{-1/2s-1} \right) \sum_{n=1}^{\infty} e^{-n^2 \pi x} \, dx \right\}$$
we can see zeros of ζ are symmetric respect the real axis because conjugates of zeros are also zeros.
Some properties of ζ

The zeros of ζ are symmetric respect to $s = 1/2$.
The zeros of ζ are symmetric respect to $s = 1/2$. Because
$$\xi(s) = \frac{1}{2} s(s - 1) \pi^{-1/2s} \Gamma(s/2) \zeta(s)$$
the function $\frac{1}{2} s \Gamma(s/2)$ has no zeros.
Some properties of ζ

Riemann conjecture: All the non–trivial zeros of ζ are contained in the line $\sigma = 1/2$.
Some properties of ζ

$N(T)$ the number of zeros in the critical line such that, $0 \leq \gamma < T$ then

$$N(T) = \frac{T}{2\pi} \log\left(\frac{T}{2\pi}\right) - \frac{T}{2\pi} + O(\log(T)).$$
(1973) Montgomery Pair Correlation Conjecture: Assume the Riemann hypothesis. For fixed $0 < a < b < \infty$ as $T \to \infty$,

$$\sum_{(\gamma, \gamma') \in [0, T]^2: a \leq (\gamma - \gamma') \frac{\log(T)}{2\pi} \leq b} 1 \sim \frac{T}{2\pi} \log(T) \int_a^b \left(1 - \left(\frac{\sin(\pi u)}{\pi u}\right)^2\right) du.$$
Gaussian Unitary Ensemble
Gaussian Unitary Ensemble

Definition

A Gaussian Unitary Ensemble is a set of $N \times N$ Hermitian matrices $H := (a_{ij})$ such that:

- The real and imaginary parts of the entries a_{ij} of H are independent random variables.
- $P(H)dH = P(H')dH'$ where $H' = U^{-1}HU$ where U is unitary.
Gaussian Unitary Ensemble

Definition

A Gaussian Unitary Ensemble is a set of $N \times N$ Hermitian matrices $H := (a_{ij})$ such that:

- The real and imaginary parts of the entries a_{ij} of H are independent random variables.
- $P(H)\, dH = P(H')\, dH'$ where $H' = U^{-1}HU$ where U is unitary.

H is GUE then a_{ij} have Gaussian distributions
GUE pair correlation of eigenvalues
GUE pair correlation of eigenvalues

Let $R(x_1, x_2) dx_1 dx_2$ denotes the pair correlation of eigenvalues.
GUE pair correlation of eigenvalues

Let $R(x_1, x_2)dx_1 dx_2$ denotes the pair correlation of eigenvalues. Intuitively the probability that there are pairs of eigenvalues in $[x_1, x_1 + dx_1] \times [x_2, x_2 + dx_2]$
Asymptotics of GUE pair correlation distribution of eigenvalues
Asymptotics of GUE pair correlation distribution of eigenvalues

Theorem

Let $R(x_1, x_2)$ denotes the pair correlation of eigenvalues. Then,

$$\frac{1}{\alpha_1 \alpha_2} R(x_1, x_2) \sim 1 - \left(\frac{\sin(\pi u)}{\pi u} \right)^2$$

as $N \to \infty$ where $u = |x_1/\alpha_1 - x_2/\alpha_2|$ and $\alpha_j = \frac{\pi}{\sqrt{2N-x_j^2}}$ is the mean local spacing of eigenvalues at x_j, $j = 1, 2$.
Convolution formula
Some ideas around Montgomery conjecture

Convolution formula

Theorem

We have

$$\sum_{(\gamma, \gamma') \in [0, T]^2} r((\gamma - \gamma') \frac{\log(T)}{2\pi}) \omega(\gamma - \gamma') \sim \frac{T}{2\pi} \log(T) \int_{\infty}^{\infty} F(u) \hat{r}(u) du$$
Observe that if $r(u) = \chi_{[a,b]}(u)$ and $\omega(\gamma - \gamma') \to 1$ when $(\gamma - \gamma') \to 0$ we will have a tool for motivating Montgomery conjecture!
Motivation of M. Conjecture
Motivation of M. Conjecture

Suppose we have already F and have proved the previous convolution formula...
Montgomery conjectured furthermore:

\[F(\alpha) = \begin{cases}
1 + o(1) & \text{for } |\alpha| \geq 1 \\
(1 + o(1)) T^{-2|\alpha|} \log(T) + |\alpha| + o(1) & \text{for } |\alpha| < 1.
\]
Motivation of M. Conjecture

$$\sum_{(\gamma,\gamma')\in[0,T]^2} r(\gamma - \gamma') \frac{\log(T)}{2\pi} \omega(\gamma - \gamma')$$
Motivation of M. Conjecture

\[\sum_{(\gamma, \gamma') \in [0, T]^2} r\left(\frac{(\gamma - \gamma') \log T}{2\pi} \right) \omega(\gamma - \gamma') \sim \frac{T}{2\pi} \log(T) \int_{-\infty}^{\infty} F(u) \hat{r}(u) du \]
Motivation of M. Conjecture

\[
\sum_{(\gamma, \gamma') \in [0, T]^2} r\left(\frac{(\gamma - \gamma') \log(T)}{2\pi}\right) \omega(\gamma - \gamma') \\
\sim \frac{T}{2\pi} \log(T) \int_{\infty}^{\infty} F(u) \hat{r}(u) du \\
= \frac{T}{2\pi} \log(T) \int_{\infty}^{\infty} \hat{F}(u) r(u) du
\]
Motivation of M. Conjecture

\[
\sum_{(\gamma,\gamma') \in [0,T]^2} r((\gamma - \gamma') \frac{\log(T)}{2\pi}) \omega(\gamma - \gamma') \\
\sim \frac{T}{2\pi} \log(T) \int_\infty^\infty F(u) \hat{r}(u) du \\
= \frac{T}{2\pi} \log(T) \int_\infty^\infty \hat{F}(u) r(u) du
\]

If we had a function \(F \) such that

\[
\hat{F}(u) = 1 - \left(\frac{\sin(\pi u)}{\pi u}\right)^2 + \delta_0
\]
Motivation of M. Conjecture

\[\sum_{(\gamma, \gamma') \in [0, T]^2} r((\gamma - \gamma') \log(T)) \frac{\log(T)}{2\pi} \omega(\gamma - \gamma') \]

\[\sim \frac{T}{2\pi} \log(T) \int_{\infty}^{\infty} F(u) \hat{r}(u) du \]

\[= \frac{T}{2\pi} \log(T) \int_{\infty}^{\infty} \hat{F}(u) r(u) du \]

\[= \frac{T}{2\pi} \log(T) \int_{\infty}^{\infty} (1 - \left(\frac{\sin(\pi u)}{\pi u} \right)^2 + \delta_0) r(u) du. \]
Motivation of M. Conjecture

Finally

\[
\frac{T}{2\pi} \log(T) \int_{\infty}^{\infty} \left(1 - \left(\frac{\sin(\pi u)}{\pi u} \right)^2 + \delta_0 \right) r(u) du =
\]

\[
\frac{T}{2\pi} \log(T) \int_{a}^{b} \left(1 - \left(\frac{\sin(\pi u)}{\pi u} \right)^2 \right) du.
\]
Remark
Remark

Using the previous approach for $r(u) := r_1(u) := \frac{\sin(2\pi au)}{\pi au}$, it is possible to prove that 2/3 of the zeros of the critical line are simple.
What is missing
What is missing

- F satisfies convolution formula and
 $$\hat{F}(u) = 1 - \left(\frac{\sin(\pi u)}{\pi u} \right)^2 + \delta_0.$$

- ω.

- Motivates

$$F(\alpha) = \begin{cases}
1 + o(1) & \text{for } |\alpha| \geq 1 \\
(1 + o(1)) T^{-2|\alpha| \log(T)} + |\alpha| + o(1) & \text{for } |\alpha| < 1.
\end{cases}$$
What is missing

It is enough to consider $\omega(u) = \frac{4}{4+u^2}$. Roughly because, for $T \gg 0$, $a \leq (\gamma - \gamma') \frac{\log(T)}{2\pi} \leq b$ only if $\gamma - \gamma'$ is small, hence $\omega(\gamma - \gamma') \sim 1$.
What is missing

\[F(u) := F(u, T) := \left(\frac{T}{2\pi} \log(T) \right)^{-1} \sum_{(\gamma, \gamma') \in [0, T]^2} T^{iu(\gamma - \gamma')} \omega(\gamma - \gamma'). \]
Proof of convolution formula:
Proof of convolution formula:

\[\frac{T}{2\pi} \log(T) \int_{-\infty}^{\infty} F(u) \hat{r}(u) du \]
Proof of convolution formula:

\[\frac{T}{2\pi} \log(T) \int_{-\infty}^{\infty} F(u) \hat{r}(u) du = \int_{-\infty}^{\infty} \sum_{(\gamma, \gamma') \in [0, T]^2} T^{iu(\gamma - \gamma')} \omega(\gamma - \gamma') \hat{r}(u) du \]
Proof of convolution formula:

\[\frac{T}{2\pi} \log(T) \int_{-\infty}^{\infty} F(u) \hat{r}(u) du = \int_{-\infty}^{\infty} \sum_{(\gamma, \gamma') \in [0, T]^2} T^{iu(\gamma - \gamma')} \omega(\gamma - \gamma') \hat{r}(u) du = \sum_{(\gamma, \gamma') \in [0, T]^2} \omega(\gamma - \gamma') \int_{-\infty}^{\infty} T^{iu(\gamma - \gamma')} \hat{r}(u) du \]
Proof of convolution formula:

\[\frac{T}{2\pi} \log(T) \int_{-\infty}^{\infty} F(u) \hat{r}(u) du \]

\[= \int_{-\infty}^{\infty} \sum_{(\gamma, \gamma') \in [0, T]^2} T^{iu(\gamma - \gamma')} \omega(\gamma - \gamma') \hat{r}(u) du \]

\[= \sum_{(\gamma, \gamma') \in [0, T]^2} \omega(\gamma - \gamma') \int_{-\infty}^{\infty} T^{iu(\gamma - \gamma')} \hat{r}(u) du \]

\[= \sum_{(\gamma, \gamma') \in [0, T]^2} \omega(\gamma - \gamma') \int_{-\infty}^{\infty} e^{iu(\gamma - \gamma')} \log(T) \hat{r}(u) du \]
Proof of convolution formula:

\[
\frac{T}{2\pi} \log(T) \int_{-\infty}^{\infty} F(u) \hat{r}(u) du
= \int_{-\infty}^{\infty} \sum_{(\gamma, \gamma') \in [0, T]^2} T^{iu(\gamma - \gamma')} \omega(\gamma - \gamma') \hat{r}(u) du
= \sum_{(\gamma, \gamma') \in [0, T]^2} \omega(\gamma - \gamma') \int_{-\infty}^{\infty} T^{iu(\gamma - \gamma')} \hat{r}(u) du
= \sum_{(\gamma, \gamma') \in [0, T]^2} \omega(\gamma - \gamma') \int_{-\infty}^{\infty} e^{iu(\gamma - \gamma')} \log(T) \hat{r}(u) du
= \sum_{(\gamma, \gamma') \in [0, T]^2} \omega(\gamma - \gamma') r(\alpha(\gamma - \gamma') \frac{\log(T)}{2\pi}). \Box
\]
What is missing
What is missing

Proposition

We have:

\[\hat{F}(u) = 1 - \left(\frac{\sin(\pi u)}{\pi u} \right)^2 + \delta_0, \]

for \(u < 1 \).
What is missing

Assuming Riemann hypothesis Montgomery proves:

\[F(u) = (1 + o(1)) T^{-2u} \log(T) + u + o(1), \]

for \(u < 1 \).
Assuming Riemann hypothesis Montgomery proves:

\[F(u) = (1 + o(1)) T^{-2u} \log(T) + u + o(1), \]

for \(u < 1 \).

Since \(T^{-2u} \log(T) \) behaves like \(\delta_0 \) when \(T \to \infty \), we can deduce that in the limit \(F(u) = |u| + \delta_0 \).
What is missing

Assuming Riemann hypothesis Montgomery proves:

\[F(u) = (1 + o(1)) T^{-2u} \log(T) + u + o(1), \]

for \(u < 1 \).

Since \(T^{-2u} \log(T) \) behaves like \(\delta_0 \) when \(T \to \infty \), we can deduce that in the limit \(F(u) = |u| + \delta_0 \).

We know that if \(f(u) := \left(\frac{\sin(\pi u)}{\pi u} \right)^2 \) then \(\hat{f}(u) = (1 - |u|) \chi_1(u) \).

The proposition follows from \(F(u) = (1 - \hat{f}(u)) + \delta_0(u) \) because \(\hat{\delta}_0 = 1 \).
Numerical motivation
Numerical motivation

Odlyzko in 1987 obtained many zeros in the critical line with very high heights to empirically test the Montgomery conjecture.
Thank you!