Monodromy Of Knizhnik-Zamolodchikov Equations

Florent Schaffhauser
Keio University, Yokohama

Abstract

In this paper, we recall, following [l], two constructions of (families of) representations of Artin’s braid group Bn
\[p_{\mathcal{K}}^B : \text{Bn} \to \text{Aut}_{\text{End}}(\mathcal{W}(\mathcal{H})) \]
and
\[p_{\mathcal{K}} : \text{Bn} \to \text{Aut}_{\text{End}}(\mathcal{W}(\mathcal{H})). \]

The representation \(p_{\mathcal{K}}^B \) is obtained analytically: it is the monodromy representation of a certain flat connection called the Knizhnik-Zamolodchikov bundle. The representation \(p_{\mathcal{K}} \) is itself obtained algebraically: it is the braid group representation associated to the universal \(\mathcal{R} \)-matrix of the quantum enveloping algebra \(\mathfrak{U}_q(\mathfrak{g}) \). Both those representations will be constructed starting from a complex semisimple Lie algebra \(\mathfrak{g} \) and objects attached to \(g \). The purpose of this paper is to give some of the tools needed to understand the statement of the following theorem:

Theorem 1 (The Kohno-Drinfeld theorem) Let \(\mathfrak{g} \) be a complex semisimple Lie algebra and let \(B \) be a g-module. The monodromy representation of a certain system of differential equations with values in \(\mathfrak{U}_q(\mathfrak{g}) \), called the Knizhnik-Zamolodchikov equations, is equivalent to the braid group representation associated to the universal \(\mathcal{R} \)-matrix of the quantum enveloping algebra \(\mathfrak{U}_q(\mathfrak{g}) \).

The KZ system

1. Monodromy representations of Artin’s braid group. In order to construct one in the above section, a monodromy representation of Artin’s braid group
\[(s) \quad B_n \rightarrow \text{Aut}_\text{End}(\mathcal{W}(\mathcal{H})) \]

and start to find a manifold \(X \) satisfying \(p_{\mathcal{K}}(X_n) = B_n \). Here, \(X_n \) will be the configuration space of all pairwise distinct points in the complex plane, up to permutation:
\[X_n = \mathfrak{U}_q(\mathfrak{g})/\mathfrak{U}_q(\mathfrak{g})_n \]
\[\mathfrak{U}_q(\mathfrak{g})_n \]

The first step is to find a manifold \(X \) satisfying \(p_{\mathcal{K}}(X_n) = B_n \). Here, \(X_n \) will be the configuration space of all pairwise distinct points in the complex plane, up to permutation:

\[X_n = \mathfrak{U}_q(\mathfrak{g})/\mathfrak{U}_q(\mathfrak{g})_n \]

Recall that \(\mathfrak{U}_q(\mathfrak{g})/\mathfrak{U}_q(\mathfrak{g})_n \) is the quotient of \(\mathfrak{U}_q(\mathfrak{g}) \) by the subalgebra \(\mathfrak{U}_q(\mathfrak{g})_n \), which consists of all elements of the form \(\sum_{i=1}^n x_i \otimes 1 \), where \(x_i \in \mathfrak{g} \) are pairwise distinct.

Theorem 2 (The Kohno-Drinfeld theorem) Let \(\mathfrak{g} \) be a complex semisimple Lie algebra and let \(B \) be a \(\mathfrak{g} \)-module. The monodromy representation of a certain system of differential equations with values in \(\mathfrak{U}_q(\mathfrak{g}) \), called the Knizhnik-Zamolodchikov equations, is equivalent to the braid group representation associated to the universal \(\mathcal{R} \)-matrix of the quantum enveloping algebra \(\mathfrak{U}_q(\mathfrak{g}) \).

The KZ system

2. Construction of a KZ system. For the above construction to make sense, one needs to specify a vector space \(W \) and endomorphisms of \(W \) satisfying relations (**), as well as an action of \(\mathfrak{g} \) on \(W \) leaving the connection \(\nabla_{s_1} s_2 \) invariant. To construct such a system, the initial data will be:
- a complex semisimple Lie algebra \(\mathfrak{g} \)
- a symmetric \(\mathfrak{g} \)-equivariant 2-terner \(t \) such that \(t \in \mathfrak{g} \) is \(\mathfrak{g} \)-equivariant and induces a \(\mathfrak{g} \)-equivariant 2-terner \(\nabla_{s_1} s_2 \) on \(W \). These \(\mathfrak{g} \)-equivariant endomorphisms satisfy relations (**).

Theorem 3 (The Kohno-Drinfeld theorem) Let \(\mathfrak{g} \) be a complex semisimple Lie algebra and let \(B \) be a \(\mathfrak{g} \)-module. The monodromy representation of a certain system of differential equations with values in \(\mathfrak{U}_q(\mathfrak{g}) \), called the Knizhnik-Zamolodchikov equations, is equivalent to the braid group representation associated to the universal \(\mathcal{R} \)-matrix of the quantum enveloping algebra \(\mathfrak{U}_q(\mathfrak{g}) \).