Johannes Rau
Johannes Rau
Doktor der Naturwissenschaften
j.rau @uniandes.edu.co
Oficina: H-302
Extensión: 2722
Información básica
Aréas de investigación: Geometría tropical Geometría Enumerativa Teoría de Intersecciones Variedades algebraicas reales
Cursos
- 2021
CÁLCULO INTEGRAL-ECUAC.DIFEREN
Primer Periodo
Pregrado
CÁLCULO VARIABLE COMPLEJA
Primer Periodo
Pregrado
Productos
Educación
Doktor der Naturwissenschaften
Doctorado
Technische Universität Kaiserslautern
2009
Alemania
Proyectos
- 2021
- Matroids in tropical geometry
Duración: 36 meses
PR.3.2020.7167
The general aim of the project is to extend and deepen the fruitful interactionbetween the geometry of smooth varieties and the combinatorial properties ofmatroids that lies at the heart of tropical geometry. More explicitly, in my projectI want to tackle three problems which are central to the further development ofthis theory:1. Using the matroidal intersection theory developed in [FR13; Sha13] and thetropical Hodge groups developed in [Ite+16], I want to prove a tropical traceformula in analogy to its classical counterparts by Lefschetz, Weil, Grothendieck,Deligne. The goal is apply this formula to the study of matroid invariants(characteristic polynomial, g-polynomial [AHK15; ADH20; Spe09]) as well as tothe study of classical non-compact trace formulas [GM03].2. I want to generalize the existing tropical-Lagrangian correspondences tohigher dimensions/codimensions using the language of Lagrangian matroids[Mat18; Mik19; Hic19; ADH20].3. The last problems aims to solve further cases of the tropical Hodge conjec-ture, particularly in the case of tropical abelian varieties [JRS18; MZ14; Zha20].
Cursos
- 2021
CÁLCULO INTEGRAL-ECUAC.DIFEREN
Primer Periodo
Pregrado
CÁLCULO VARIABLE COMPLEJA
Primer Periodo
Pregrado
- 2020
Productos
Educación
Doktor der Naturwissenschaften
Doctorado
Technische Universität Kaiserslautern
2009
Alemania
Proyectos
- 2021
- Matroids in tropical geometry
Duración: 36 meses
PR.3.2020.7167
The general aim of the project is to extend and deepen the fruitful interactionbetween the geometry of smooth varieties and the combinatorial properties ofmatroids that lies at the heart of tropical geometry. More explicitly, in my projectI want to tackle three problems which are central to the further development ofthis theory:1. Using the matroidal intersection theory developed in [FR13; Sha13] and thetropical Hodge groups developed in [Ite+16], I want to prove a tropical traceformula in analogy to its classical counterparts by Lefschetz, Weil, Grothendieck,Deligne. The goal is apply this formula to the study of matroid invariants(characteristic polynomial, g-polynomial [AHK15; ADH20; Spe09]) as well as tothe study of classical non-compact trace formulas [GM03].2. I want to generalize the existing tropical-Lagrangian correspondences tohigher dimensions/codimensions using the language of Lagrangian matroids[Mat18; Mik19; Hic19; ADH20].3. The last problems aims to solve further cases of the tropical Hodge conjec-ture, particularly in the case of tropical abelian varieties [JRS18; MZ14; Zha20].
Sitio Web
Para consultar mi sitio web: Aquí