Susanna Dann

Inicio / Profesores / Susanna Dann
Susanna Dann

Susanna Dann

Doctor of Philosophy

s.dann @uniandes.edu.co

Oficina: H-000

Extensión: 5220

Información básica
Cursos
Productos
Educación
Proyectos

Información básica

Cursos

  • 2021
    • ANÁLISIS 1 (INGLÉS)

      Primer Periodo
      Pregrado

      ALGEBRA LINEAL 1 (INGLÉS)

      Primer Periodo
      Pregrado

Productos

Cristancho S .(2020). Classification of Well-Rounded Sublattices for Lattice Code Construction.
Classification of Well-Rounded Sublattices for Lattice Code Construction
Tesis
Dann S. (2019)
Flag Area Measures
Artículo

Educación

Doctor of Philosophy

Doctorado

Louisiana State University

2011

Estados Unidos

Proyectos

  • 2019
    • Geometric Inequalities and Smooth Valuations

      Duración: 36 meses

      PR.3.2019.5947

      The research part of this project concerns several areas of convex geometry. One part is based on the previous as well as current and ongoing work with Grigoris Paouris (Texas A&M University) and Peter Pivovarov (University of Missouri). We introduce generalizations of classical notions of affine and dual affine quermassintegrals and extend all previously known results to this new setting. It seems that further generalizations would yield promising applications, similar in spirit to those achieved in [DPP 2016]. Our results from [DPP 2016] suggest the existence of new geometric inequalities that seem to be connected with the k-plane transform. I would like to explore this direction, which will require surveying the existing literature on the subject, and is therefore a good topic for a seminar as there are many open questions related to the  k-plane transform. Another part of the project concerns questions around the Simplex Mean Width Conjecture. The last part is about smooth valuations. This is a recent and promising avenue in the theory of valuations with many open questions.

Cursos

  • 2021
    • ANÁLISIS 1 (INGLÉS)

      Primer Periodo
      Pregrado

      ALGEBRA LINEAL 1 (INGLÉS)

      Primer Periodo
      Pregrado
  • 2020
    • ALGEBRA LINEAL 1 (INGLÉS)

      Primer Periodo
      Pregrado

      ALGE LINEAL 1(HONORES)(INGLÉS)

      Primer Periodo
      Pregrado
    • INT ANÁLISIS ARMÓNICO

      Segundo Periodo
      Maestría

      INT ANÁLISIS ARMÓNICO

      Segundo Periodo
      Pregrado
    • ALGEBRA LINEAL 1

      Segundo Periodo
      Pregrado
  • 2019
    • BRUNN-MINKOWSKI THEORY(INGLES)

      Segundo Periodo
      Pregrado

      CONVEX AND DISCRE GEOM(INGLÉS)

      Primer Periodo
      Maestría
    • ALGEBRA LINEAL 1 (INGLÉS)

      Primer Periodo
      Pregrado

      ALGEBRA LINEAL 1 (INGLÉS)

      Segundo Periodo
      Pregrado
    • BRUNN-MINKOWSKI THEORY(INGLES)

      Segundo Periodo
      Maestría

      CONVEX AND DISCRE GEOM(INGLÉS)

      Primer Periodo
      Pregrado
  • 2018
    • ALGEBRA LINEAL 1 (INGLÉS)

      Segundo Periodo
      Pregrado

Productos

Cristancho S .(2020). Classification of Well-Rounded Sublattices for Lattice Code Construction.
Classification of Well-Rounded Sublattices for Lattice Code Construction
Tesis
Dann S. (2019)
Flag Area Measures
Artículo
Dann S.
Harmonic Analysis, special session in Honor of Gestur Olafsson´s 65 Birthday at the AMS Joint Mathematics Meeting
Evento
Dann S, Gestur O. (2011)
Paley-Wiener theorems with respect to the spectral parameter
Contemporary Mathematics (ISSN 0271-4132)
Artículo

Educación

  • Doctor of Philosophy

    Doctorado

    Louisiana State University

    2011

    Estados Unidos

Proyectos

  • 2019
    • Geometric Inequalities and Smooth Valuations

      Duración: 36 meses

      PR.3.2019.5947

      The research part of this project concerns several areas of convex geometry. One part is based on the previous as well as current and ongoing work with Grigoris Paouris (Texas A&M University) and Peter Pivovarov (University of Missouri). We introduce generalizations of classical notions of affine and dual affine quermassintegrals and extend all previously known results to this new setting. It seems that further generalizations would yield promising applications, similar in spirit to those achieved in [DPP 2016]. Our results from [DPP 2016] suggest the existence of new geometric inequalities that seem to be connected with the k-plane transform. I would like to explore this direction, which will require surveying the existing literature on the subject, and is therefore a good topic for a seminar as there are many open questions related to the  k-plane transform. Another part of the project concerns questions around the Simplex Mean Width Conjecture. The last part is about smooth valuations. This is a recent and promising avenue in the theory of valuations with many open questions.