Programa




  Lunes Martes Miércoles Jueves Viernes
09:00 - 10:00 A 1 G 1 G 2 G 3 G 4
10:15 - 11:15 B 1 A 3 A 5 B 4 E 2
11:30 - 12:30 A 2 B 3 C 3 C 4 E 3
Almuerzo
14:30 - 15:30 C 1 A 4 Excursión D 3 F 2
15:45 - 16:45 D 1 C 2 F 1 F 3
17:00 - 18:00 B 2 D 2 E 1  

(compare with AGRA 3)

Talks: (usually 90 minutes, if not specified otherwise)

Speaker A (4 Guillermo + 1 Kazim) (mostly without proofs) (Refresh/introduction course in algebraic number theory and class field theory)

A1-5:



Speaker B (Peter) (Structure theory of Iwasawa modules and Iwasawa's asymptotic formula)

B1-4:

General structure theory of Iwasawa-modules, Z_p-extensions, (compact) Nakayama's lemma [NSW]V§1, §2: 5.2.18-20 (only for G=Z_p), §3: beginning-5.3.11, 5.3.17, XI beginning-(11.1.6) – everything from [CS] Appendix should be covered

Speaker C (Otmar) (Local Units, Coleman's construction, higher logarithmic derivatives)

C1-4:

[CS] II 2.1-6

Speaker D (Sujatha) (Measures and Iwasawa-algebra)

D1-3:

[CS] III 3.1-6

Speaker E (Cornelius) (Cyclotomic units and Iwasawa's theorem)

E1-3:

[CS] IV 4.2-5 in detail; if time permits some statements from 4.6-8

Speaker F (Kazim) (Survey on the proof of the main conjecture and Euler systems)

F1-3:

[CS] V, VI sketch (using in particular results from IV 4.6-8 and §5.5 as black box)

Speaker G (Michael) – tutorials, each 60 minutes


Literature:
[CS] Coates/Sujatha: Cyclotomic Fields and Zeta Values, Springer
[N] Neukirch: Algebraic number theory, Springer
[NSW] Neukirch, Schmidt, Wingberg: Cohomology of number fields, Springer